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A B S T R A C T

Alzheimer’s disease (AD) is a neurodegenerative disease characterized by cognitive and behavioral impairment
that significantly interferes with social and occupational functioning. Mild cognitive impairment (MCI) is
a relatively broad clinical condition involving a slight memory deficit, which in many cases represents a
transitional state between a cognitively normal (CN) condition and AD. Structural magnetic resonance (sMR)
imaging has been widely used in studies related to AD because it provides images with excellent anatomical
details and information about structural and contrast changes induced by the disease in the brain. Many
published studies restrict their analysis to a few particular regions of the brain and search for structural
changes caused by the disease. Recent studies start looking for new AD biomarkers using multiple brain regions
and focusing on subtle texture changes in the image. Therefore, this study proposes a new technique for MR
image classification in AD diagnosis using graph kernels constructed from texture features extracted from sMR
images. In our method, we first segment the MR brain images into multiple regions with the FreeSurfer. Then,
we extract 22 texture features using three methods and define the graph-node attributes as the probability
distributions of the extracted features. Next, for each texture feature, we build a graph and define its edge
weights as the distances between pairs of node attributes using three distance metrics. After that, we use a
threshold-based approach for graph edges removal and create the graph-kernels matrices. Finally, we perform
image classification using Support Vector Machines (SVMs) with two graph-kernels. Results of our method
have shown better performances for the CN×AD (AUC = 0.92) and CN×MCI (AUC = 0.81) classifications, and
worse for the MCI×AD case (AUC = 0.78). This trend is consistent with other published results and makes
sense if we consider the concept of Alzheimer’s disease continuum from pathophysiological, biomarker and
clinical perspectives. Besides allowing the use of different texture attributes for the diagnosis of Alzheimer’s,
our method uses the graph-kernel approach to represent texture features from different regions of the brain
image, which considerably facilitates the image classification task via SVMs. Our results were promising when
compared to the state-of-the-art in graph-based AD classification.
1. Introduction

Alzheimer’s disease (AD) is a progressive and irreversible brain
disease that slowly degrades brain functions. AD is the most frequent
form of dementia that affects over 47 million people worldwide and
this number may triple by 2050 (Livingston et al., 2017). Since this
disease has currently no cure, the early diagnosis is essential so that
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E-mail addresses: lucasjose-ap@hotmail.com (L.J.C. de Mendonça), rferrari@ufscar.br (R.J. Ferrari).
URL: http://www.bipgroup.dc.ufscar.br (R.J. Ferrari).

1 Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the
investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this
report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

the patient can begin a treatment to slow the worsening of symptoms.
Mild cognitive impairment (MCI) is a relatively broad clinical condi-
tion involving a slight memory deficit, which most times represents
a transitional state between a cognitively normal (CN) condition and
AD (Morris et al., 2001).

The neuropathological diagnosis of AD depends on the presence
of both neurofibrillary tangles and senile plaques. The number of
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neurofibrillary tangles is tightly linked to the degree of dementia, sug-
gesting that the formation of neurofibrillary tangles directly correlates
with neuronal dysfunction (Butterfield & Halliwell, 2019; Martins et al.,
2018). In Alzheimer, the regional pattern of areas affected by the
formation of neurofibrillary tangles during the course of the disease
is relatively known and not difficult to predict.

Recent studies related to AD biomarkers (Dubois et al., 2014; McK-
hann et al., 2011) recommend the use of the measurements of cere-
brospinal fluid (CSF), amyloid-𝛽, tau and neuronal injury biomarkers
o aid the diagnosis of AD. Some of these biomarkers can be obtained
rom neuroimaging techniques such as Magnetic Resonance Imaging
MRI) and Positron Emission Tomography (PET). In addition to imaging
iomarkers, in-home sensing of daily living patterns acquired from
lder adults, used as input to machine learning models, has also shown
reat success to detect MCI cases (Teh, Rawtaer, & Tan, 2022).

MRI is usually the preferred imaging technique for structural brain
nalysis in AD, as it provides images with excellent soft tissue differen-
iation and good spatial resolution, with no known health risks. Besides
he structural information, the formation of neurofibrillary tangles and
he deposit of senile plaques can leave certain gray valued patterns,
hich may not be visible to the human eye but can be assessed from

exture algorithms (Castellano, Bonilha, Li, & Cendes, 2004; Sørensen
t al., 2016).

Several studies have been proposed in the literature aiming to
atch the subtle gray-level intensity patterns created by soft tissue
iseases, such as hepatic (Albu, Precup, & Teban, 2019) and AD pro-
ression (Bustamam, Sarwinda, & Ardenaswari, 2018; Liu, Wang, Hu,

Pan, 2017; Zhang, Yu, Jiang, Liu, & Tong, 2012). The methods
ommonly used for texture extraction are the Gray Level Co-Occurrence
atrix (GLCM) (Haralick, Shanmugam, & Dinstein, 1973), the Run

ength Matrix (RLM) (Galloway, 1974) and the Local Binary Patterns
LBP) (Ojala, Pietikäinen, & Harwood, 1996). These methods work as
tructural-based texture feature extractors, since they analyze the spa-
ial relationship between a pixel (or voxel) and its neighborhood (Cai
t al., 2020). Other less common, but no less important approaches
o texture analysis in AD use transform-based methods to assess the
riented spatial-frequency content of an image (Feng, Zhang, & Chen,
020; Nanni et al., 2019).

In our previous studies we have mainly assessed structural changes
f the hippocampal regions of the brain (Araújo, Poloni, & Ferrari,
021; Cambui, Poloni, & Ferrari, 2021; Oliveira, Poloni, & Ferrari,
020; Poloni & Ferrari, 2022a, 2022b; Silveira Souza, Poloni, & Ferrari,
020). Although AD is well known to damage the hippocampal sub-
ields (Hett et al., 2019; Sørensen et al., 2016), the neurodegenerative
ffects of the disease are not restricted to these structures. In fact, the
ffects of the disease are found to be widespread in the brain. Liu
t al. (2017), for instance, extracted texture feature maps with the
LCM method of ninety segmented brain regions for AD classification.
he average gray levels of the six extracted feature maps for each
egion were calculated and used to create a six-position vector to rep-
esent each brain region. To combine the information of all segmented
egions, the authors built a graph using the texture feature vectors
o represent its nodes and used the Pearson correlation measures of
airs of feature nodes to represent its edges. The classification was
erformed independently for the concatenated feature nodes and edges
sing multiple MKBoost (Xia & Hoi, 2012) classifiers.

Hett, Ta, Manjón, and Coupé (2018) used a graph to represent
mage features extracted from 134 brain regions. In their work, first,
nter-subject similarities were captured by using a patch-based grading
ramework (PBG) (Coupé et al., 2012) applied over the entire brain
mages of a training dataset composed of CN and AD subjects. Sec-
nd, intra-subject variability was modeled by a graph representation.
he study compared the performance of intra-subject variability fea-
ures (i.e., the edges of the graph) with inter-subject pattern similarity
2

eatures (i.e., the vertices).
Recently, Hett et al. (2021) used graphs to represent image features
extracted from 133 brain regions plus five hippocampal subfields.
In their work, the graphs were constructed by using the attributes
extracted with the PBG method for each region. Two graphs of each
image were constructed, one with the 133 brain regions and the other
with the five hippocampal subfields. A novelty in their work includes
the results of five cognitive tests for each patient in the classification.
The classification was performed for each graph independently (whole-
brain and subfields) as an ensemble of intermediate Random Forest
classifiers, where their results were unified with cognitive scores.

Unlike previous works based on the traditional graph approach,
some studies in brain image classification (Cui et al., 2018; Jie, Liu,
Jiang, & Zhang, 2016; Jie, Liu, Zhang, & Shen, 2018) use kernel-
based graph classification. Graph kernels (Kriege, Johansson, & Morris,
2020b) is an approach that aims to learn directly from graph-structured
data by using kernel functions to measure the similarity between
graphs. In this approach the graphs can be plugged into a kernel
machine, such as a support vector machine (SVM) (Boser, Guyon, &
Vapnik, 1992; Cristianini, Shawe-Taylor, et al., 2000), and the posted
problem can now be treated as a conventional classification task.

More recently, some studies have explored graph-based approaches
with deep learning to identify the relationship between early-MCI
and late-MCI images. Song, Elazab, and Zhang (2020), for instance,
proposed a method based on a combination of high-order network
and graph convolutional network (GCN). In their work, high-order net-
work combined static, dynamic and high-level information to construct
functional connectivity network (FCN) while GCN included non-image
information to improve classifier’s performance. Features of the com-
bined high-order FCNs were extracted by using a recursive feature
elimination method and the results were inputted into the GCN, in
which MCI-graph establishes interactions between individuals and pop-
ulations by using non-image information, and finally the GCN outputs
the binary classification result. Liu, Tan, Lan, and Wang (2020) pro-
pose a new method for identification of early MCI (eMCI) cases using
multi-modal data and GCNs. First, the authors performed image pre-
processing and feature representation for both T1-weighted (T1-w) MRI
and resting state functional MRI (rs-fMRI) data of each subject. Then, a
multi-task feature selection method was used to obtain features that are
more helpful in identifying eMCI. After that, they constructed a subject
graph using imaging phenotypic measures and non-imaging phenotypic
measures of each subject. Finally, a GCN model was applied to perform
the eMCI identification task.

In this study, we propose a method based on graph kernels con-
structed from image texture features for AD diagnosis. We extract
multiple texture features of 92 segmented brain regions using the
GLCM, RLM and LBP algorithms. The graphs are constructed by consid-
ering the brain regions, represented by either probability distributions
of texture feature maps or statistical moments and brain region volume
as node attributes and the distance between the node attributes as
edges. Three different distance metrics defining the graph edges were
investigated. To learn the differences between the graph representa-
tions of the MR images in the classification of CN×MCI, CN×AD and
MCI×AD cases, we use graph-based kernels and SVM classifiers. In
our classification scheme, we selected the best combination of graph
kernel, texture feature, and edge distance metric and introduced a new
threshold-based approach for graph edges selection to help determine
the most discriminatory region connections of the graphs.

In summary, our contributions to 3D MR image classification in
Alzheimer’s diagnostic include: (i) development of a new method based
on graph kernels that allows using various 3D image texture attributes,
(ii) evaluation of three texture filters and two feature extraction meth-
ods and demonstration of their capabilities for classification, (iii) de-
velopment of a threshold-based method to remove edges from graphs
to help select the most discriminating model, (iv) assessment of three
different distances to compare probability distributions, and (v) exhaus-
tive analysis of the proposed method using a significant number of MR

images.
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Fig. 1. Overview of our method.
Table 1
Demographic information of the 474 subjects extracted from the ADNI database. The
MMSE stands for Mini-Mental State Examination.

CN MCI AD

Number of subjects 200 153 121
Age (mean ± deviation) 73.7 ± 4.2 76.6 ± 4.2 76.9 ± 4.2
MMSE (mean ± deviation) 29.5 ± 0.4 26.9 ± 0.8 21.9 ± 2.6
Gender (F : M) 101 : 99 57 : 96 55 : 66

2. Material and methods

In this section, we describe in detail each step of the processing
pipeline as shown in Fig. 1 and provide information about the MR
image dataset used in our experiments and how we split the data into
two groups to estimate the parameters of our methods. In addition, we
describe our methods for extracting texture features, constructing brain
graphs, removing graph edges with a threshold-based approach, and
finally classifying the MR images.

2.1. Dataset

The MR images used in this study are from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) dataset (Jack et al., 2008), which is
composed of MR and positron emission tomography (PET) images
along with clinical test scores. In this study, we used a total of 474
structural MR T1-w images (200 CN, 153 MCI and 121 AD) from a wide
variety of 1.5T and 3T scanners, all acquired using the Magnetization
Prepared Rapid Gradient Echo (MPRAGE) protocol. Table 1 presents
the demographic information of individuals. Furthermore, fifty images
(25 CN and 25 AD) were randomly selected to form a data subset to
estimate the parameters of the developed methods.

2.2. Segmentation of brain regions

In this study we segmented 105 brain regions using an atlas-based
approach provided by the FreeSurfer2 software suite to build the
graphs. The main pipeline of this suite applies the required prepro-
cessing steps and resample the study images to 256 × 256 × 256 to
match the image space used by the FreeSurfer segmentation approach.

2 https://surfer.nmr.mgh.harvard.edu.
3

After that, the brain regions are extracted using the FreeSurfer’s sub-
cortical segmentation (ASEG) and Desikan–Killiany–Tourville (DKT) at-
lases (Fischl et al., 2004; Klein & Tourville, 2012). In this case, the DKT
atlas acts as a complementary ASEG-atlas by providing brain regions
known to be related with the AD progression, such as the entorhinal
cortex. In addition, it has been validated for its capability to estimate
brain region volumes when compared to other atlases (Yaakub et al.,
2020). As a complementary procedure, we evaluated all segmented
regions of our database and removed those whose voxel numbers were
outside of a defined range, [𝑁𝑚𝑖𝑛, 𝑁𝑚𝑎𝑥], where 𝑁𝑚𝑖𝑛 is the average
number of voxels of the entorhinal cortex and 𝑁𝑚𝑎𝑥 was defined as
25,000 voxels. This procedure that reduced the number of regions from
105 to 92 was used to avoid considering tiny and huge brain structures
which could affect our analysis.

2.3. Texture filters

After the segmentation step, we extracted 22 texture features,
𝐹1,… , 𝐹22, from each segmented brain region defined by a binary brain
mask generated by the FreeSurfer. For the texture feature extraction
we used the GLCM, RLM and LBP techniques. Since the features are
computed directly from the image intensity values, we decided to
use the least processed image generated by FreeSurfer pipeline while
maintaining its alignment with segmented region of interest (ROI)
masks.

2.3.1. Gray level co-occurrence matrix
The GLCM technique (Haralick et al., 1973) extracts image texture

features from the second order statistics of the spatial relationship
between image intensity values, which can be seen as the co-occurrence
of pairs of pixels/voxels that are at a particular distance and orienta-
tion from each other. In this study we used the GLCM method from
the Insight Toolkit (ITK) library (McCormick, Liu, Ibanez, Jomier, &
Marion, 2014; Vimort, McCormick, Budin, & Paniagua, 2017) that
implements eight texture features, 𝐹1, 𝐹2,… , 𝐹8. More details on the
implementation of these features are available in the Appendix A. We
used the library’s default parameters, which for 3D images are set to
thirteen orientations and voxel distance equal to one.

2.3.2. Run length matrix
The RLM technique (Galloway, 1974) generates a matrix 𝑃𝜃(𝑖, 𝑙)

containing the number of runs of pixels/voxels that exists in an image
for a gray value 𝑖 and length 𝑙 in a direction 𝜃. The statistical parameters
derived from this matrix can describe texture features in the sense of

https://surfer.nmr.mgh.harvard.edu
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their coarseness, for long-runs, and finest, for short-runs. In this study
we used ten texture features implemented in the ITK library that are
derived from thirteen directions and run length of one. The definition
of all eighteen texture features obtained using the GLCM and RLM
methods implemented in the ITK library can be found in (Vimort et al.,
2017). Taking into account the eight GLCM texture features sequence,
we define the RLM texture features, 𝐹9, 𝐹10,… , 𝐹18, as described in the

ppendix B.

.3.3. Local binary patterns
The LBP method was first introduced by Ojala et al. (1996) as an

fficient method for texture description in 2D images. In this study we
sed a 3D version of the LBP proposed by Banerjee, Moelker, Niessen,
nd Van Walsum (2012) which applies spherical harmonic functions
n a sampling scheme to provide rotational invariant features. The
D LBP method requires to adjust three parameters, the number of
pherical harmonic levels (𝑛𝑠ℎ𝑙), the radius (𝑟𝑛) in which the neighbors
hould be sampled, and the number of subdivisions (𝑛𝑖) to apply in
he icosphere. By changing these parameters, we can obtain different
exture images. Based on experimental analysis using a data subset of
ifty MR images (25 CN and 25 AD) as mentioned in Section 2.1, we
ound that the parameter values 𝑛𝑠ℎ𝑙 = 3, 𝑟𝑛 = 2, and 𝑛𝑖 = 1 provide the
est compromise between high accuracy results and low computational
ost. In addition to the texture images resulting using the parameters
escribed above, the method provides a kurtosis image that is also
ncorporated in our analysis. Therefore, the LBP methods provides a
otal of four texture features, defined herein as 𝐹19 for the first level of
armonic spheres, 𝐹20 for the second level, 𝐹21 for the third, and 𝐹22

for the kurtosis.

2.4. Feature extraction

Since each processed MR image produces 22 filtered counterparts,
we extracted and represented the texture features using two main ap-
proaches. The first approach represents each segmented region by a set
of probability distributions (one distribution for each of the 22 texture
features) obtained from the normalized texture feature histograms with
a fixed number of bins. The distributions are used as node attributes
and also serve to compute the edge weights between pairs of nodes.
The second approach uses a vector composed of the first four statistical
moments extracted from the texture maps of each segmented brain
region and the corresponding brain region volume to represent the node
attributes. For better understanding, we represent the feature matrix for
each subject 𝑠 as follows:

𝑀𝑠 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑓0,0 𝑓0,1 … 𝑓0,𝑛𝑓−1
𝑓1,0 𝑓1,1 … 𝑓1,𝑛𝑓−1
⋮ ⋮ ⋱ ⋮

𝑓𝑛𝑟−1,0 𝑓𝑛𝑟−1,1 … 𝑓𝑛𝑟−1,𝑛𝑓−1

⎤

⎥

⎥

⎥

⎥

⎦

, (1)

here 𝑛𝑟 = 92 is the number of segmented ROIs (please refer to
ppendix C), 𝑛𝑓 = 22 is the number of texture features, i.e., the matrix
ows represent the segmented regions and its columns each texture
eature. In this case, each element corresponds to a particular texture
eature of a given segmented brain region. It is worthy mentioning
hat before the texture feature extraction, we perform a min–max
ormalization per feature of all analyzed brain regions on all subjects
matrix columns normalization).

This matrix indicates how each subject is represented from this step
nward, as shown in Fig. 1, and this is the starting point for the next
wo approaches for the graph attributes extraction. A visual represen-
ation of the required steps to obtain the feature matrix of Eq. (1) is
hown of Fig. 2. As can be noticed, in the first step a raw image is
reprocessed by FreeSurfer and resampled to a new spatial space. Next,
inary masks of several segmented brain regions from two atlases are
sed to define the analyzed regions on the texture image maps obtained
sing the GLCM, RLM and LBP techniques. The information from the
exture image maps are used to build a feature matrix that represents
4

or each subject the texture features by brain regions.
.4.1. Texture feature distributions
Defining the number and width of bins to construct the texture

eature distributions of the segmented brain regions to allow computing
he distance between distributions is an essential task, considering the
istinct range of values of the texture maps. To facilitate the calculation
f the statistical distances between the feature distributions of pairs of
rain regions so that to define the graph edge weights, we applied a
athematical strategy to determine automatically a fixed number of

ins for the representation.
The Freedman–Diaconis (FD) rule (Freedman & Diaconis, 1981),

hich was recently used for the discretization of texture features
Dieckmeyer et al., 2021; Noortman et al., 2020), is a robust estima-
or (i.e., resilient to outliers) that considers data variability and size.
he rule to determine the optional number and width of bins for a
istribution are defined as

in width =
2 ⋅ IQR

3
√

𝑁
, (2)

and

#bins =
⌊

max(𝐼ROI) − min(𝐼ROI)
bin width

⌋

, (3)

where IQR is the mean interquartile range and 𝑁 is the number of
voxels in the assessed image ROI (𝐼ROI).

In our study, we first calculated the number of bins of the texture
feature distributions using Eq. (3) for all segmented regions of our data
subset of 50 images (25 AD and 25 CN). Next, for each texture attribute
we average the number of bins from all regions and use the resulting
value to build the histograms and distributions for the further graph
analysis. Therefore, the elements of matrix 𝑀𝑠 are defined as

𝐟𝑖,𝑗 =
[

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦-𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛-𝑣𝑒𝑐𝑡𝑜𝑟𝑖,𝑗
]

. (4)

In addition, it is performed the min–max normalization on the
distributions per region over all features for each subject (matrix rows
normalization).

2.4.2. Region volume and statistical moments
As another feature extraction strategy, we replaced the elements

of matrix 𝑀𝑠 with vectors composed of volume and the first four
statistical moments extracted from the texture maps of each segmented
brain region. Therefore, the elements of the new matrix are defined as

𝐟𝑖,𝑗 =
[

𝑣𝑜𝑙𝑢𝑚𝑒𝑖, 𝑚𝑒𝑎𝑛𝑖,𝑗 , 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑖,𝑗 , 𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠𝑖,𝑗 , 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠𝑖,𝑗
]

, (5)

where 𝑖 and 𝑗 correspond to the indices of a segmented brain region
and a texture feature map, respectively.

2.5. Brain graphs methodology

In order to capture the relationships between the texture patterns
extracted from different brain regions of the MR images for the detec-
tion of Alzheimer’s disease, in this study we used undirected attributed
graphs 𝐺 = (𝑉 ,𝐸, 𝑎) without loops. In this case, 𝑉 =

{

𝑣1,… , 𝑣𝑁
}

is
the set of vertices for the 𝑁 segmented brain regions, 𝐸 is the set of
weighted edges, with each edge defined as (𝑢, 𝑣) ∈ 𝐸 for 𝑢, 𝑣 ∈ 𝑉 and
𝑎 ∶ 𝑉 → R𝐷 is a node attribute function that maps 𝑉 to attribute vectors
of dimension 𝐷.

For each image we extracted 22 texture features, as defined in
Section 2.3, from all 92 brain regions (Section 2.2). For each texture
feature we build two types of graphs. In the first, each node attribute,
representing a given brain region, was defined by the distribution of the
texture map of that region, while in the second the node attribute was
defined by the vector composed of the first four gray level statistical
moments and the region volume. Details of the graph construction are
provided in the subsequent sections.
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Fig. 2. Visual representation of the first steps shown in Fig. 1 for a single subject.
2.5.1. Node attributes
As mentioned previously, we have two approaches to build graph

node attributes according to the feature extraction methods. For each
texture feature, the node attributes are defined as:

1. The distribution of texture map values (Eq. (4)).
2. The feature vector composed of statistical moments and the

region volume (Eq. (5)).

2.5.2. Edges and distances
The edge weights of our two types of graphs were defined by the

distance between the two corresponding discrete nodes’ attributes 𝑢 and
𝑣 of dimension 𝑑.

As we are using undirected graphs, we evaluate three distances that
meet two crucial requirements, which are: symmetry and adequacy for
comparing probability distributions. The two distances are described as
follows.

Wasserstein distance (𝐷𝑤𝑠) (Rubner, Tomasi, & Guibas, 2000),
also known as the earth mover distance, is a measure of distance
between two probability distributions over a region 𝐷. In this study,
we used the equivalent formulation proposed by Ramdas, Trillos, and
Cuturi (2017), where the distance is defined as

𝐷𝑤𝑠 (𝐮, 𝐯) =
∑

|𝑐𝑑𝑓 (𝐮) − 𝑐𝑑𝑓 (𝐯)| , (6)

where 𝑐𝑑𝑓 (⋅) is the cumulative distribution function.
Kullback–Leibler distance (𝐷𝑘𝑙) (Kullback & Leibler, 1951), also

known as relative entropy, is commonly used to measure the amount of
information lost from one probability distribution to another. Although
this distance is not symmetric, in order to obtain the symmetry property
in this study we used the average distances between 𝐷𝑘𝑙 (𝐮, 𝐯) and
𝐷𝑘𝑙 (𝐯,𝐮) as

𝐷𝑠𝑦𝑚−𝑘𝑙 (𝐮, 𝐯) =
1
2
[

𝐷𝑘𝑙 (𝐮 ∥ 𝐯) +𝐷𝑘𝑙 (𝐯 ∥ 𝐮)
]

, (7)

where

𝐷𝑘𝑙 (𝐩 ∥ 𝐪) =
∑

𝑥∈
𝐩(𝑥) ln 𝐩(𝑥)

𝐪(𝑥)
, (8)

where 𝑥 corresponds to an instance of the texture probability space  .
Hellinger distance (𝐷ℎ𝑔), initially proposed by Hellinger (1909), is

similar to the total variation distance, except that it resembles to the
L2-norm. In its discrete form the distance is computed as

𝐷ℎ𝑔 (𝐮, 𝐯) =
1
√

2
‖

‖

‖

√

𝐮 −
√

𝐯‖‖
‖2

. (9)

2.5.3. Threshold-based edge removal
When working with graphs constructed from images, one of the

main challenges is how to construct discriminative graphs to be used
in a classification task. In the literature, a handful of works use the
Pearson correlation coefficient (Jie et al., 2016; Liu et al., 2016, 2017)
to set a minimum threshold-value based on the p-value, while other
works use the minimum spanning tree frequency between nodes to find
the most frequent sub-network (Cui et al., 2018). One approach that is
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common in several works in the literature when working with brain
graphs is to initiate with a complete graph, which is the case where
all nodes are connected to each other, and then apply an edge removal
method to obtain the most discriminative graph representation.

In this study we develop a threshold-based approach to graph edge
removal that generates a threshold value for each texture feature.

Let 𝐺𝐶𝑁 and 𝐺𝐴𝐷 be two sets of complete graphs built from CN and
AD MR image subjects, respectively, where the graphs have the same
number of nodes and 𝐺(𝑖)

𝐶𝑁 ∈ 𝐺𝐶𝑁 and 𝐺(𝑖)
𝐴𝐷 ∈ 𝐺𝐴𝐷, for 𝑖 = 1,… , 𝑛𝑠,

represent the 𝑖th graphs of each set. In this study 𝑛𝑠 = 25 corresponds to
the number of images selected for parameter estimation, as mentioned
in Section 2.1.

Now, considering 𝐝𝑓 ∈ R𝑛𝑠 a vector of the average weight distances
between all graphs in the 𝐺𝐴𝐷 and 𝐺𝐶𝑁 sets (pairwise comparison) for
a given texture feature 𝑓 , with 𝑓 ∈ [0,… , 21], then each vector element
is calculated as

𝑑𝑓,𝑖 =

∑

𝑒∈𝐸
|

|

|

|

𝑤
(

𝐺(𝑖)
𝐶𝑁 , 𝑒

)

−𝑤
(

𝐺(𝑖)
𝐴𝐷, 𝑒

)

|

|

|

|

|𝐸|

, (10)

where 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is an edge formed by the nodes 𝑢, 𝑣 ∈ 𝑉 , |𝐸| is the
size of the edge set, and 𝑤 ∶ 𝐺, 𝑒 → R is a weight function that receives
a graph 𝐺 and an edge 𝑒 and outputs an edge weight, computed herein
as the distance between the texture distributions of the nodes. In this
case, any of the distances defined in Section 2.5.2 can be used.

To determine the most discriminative graph representation for our
image classification task, we defined a threshold 𝑇𝑓 for each texture
feature 𝑓 which is the mean value of distances between the diagnostic
group pairwise comparison stored in the vector 𝐝𝑓 as

𝑇𝑓 (𝑛) = 𝜇𝑓 + 𝑛 ⋅ 𝜎𝑓 , (11)

where 𝑛 is a multiplicative factor, and 𝜇𝑓 and 𝜎𝑓 are the mean and
standard deviation, respectively, for an arbitrary texture feature 𝑓 are
obtained as

𝜇𝑓 =
∑𝑛𝑠

𝑖=1 𝑑𝑓,𝑖
𝑛𝑠

, (12)

and

𝜎𝑓 =

√

√

√

√

√

∑𝑛𝑠
𝑖=1

|

|

|

𝑑𝑓,𝑖 − 𝜇𝑓
|

|

|

2

𝑛𝑠
. (13)

The optimal 𝑛 values are determined experimentally and their values
are provided with the results in Section 3. In our study, graph edges
are removed when their distances are less than the average of all graph
edges of the estimation dataset, which are computed independently to
the classification subjects.

2.6. Classification model

In this section we describe our image classification model that is
based on graph-kernels and SVM classifiers. First, in Section 2.6.1,
we briefly present the main theoretical ideas of the SVM classifier.
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Then, in Section 2.6.2 we provide details on the graph kernels used
in this study. Finally, in Section 2.6.3 we discuss how the graph-
kernels are integrated into the SVM classifier to create our graph-kernel
SVM models and how the regularization parameter 𝐶 is tuned in the
cross-validation strategy.

2.6.1. SVM classifier
In this study we consider the standard binary classification problem,

applied to each of the cases CN×AD, CN×MCI and MCI×AD, where
training vectors 𝐱𝑖 ∈ R𝑛, 𝑖 = 1,… , 𝑙 from two classes and a label vector

∈ R𝑙, such that 𝑦𝑖 ∈ {1,−1}, are provided and we must design a
inear classifier, specified by the function ℎ𝝎,𝑏(𝐱) = sign(𝝎𝑇𝜙(𝐱)+𝑏). For
ur regularized SVM classifier, the parameters (𝝎, 𝑏) are obtained by

solving the following convex optimization problem (Boser et al., 1992;
Cristianini et al., 2000):

min
𝝎,𝑏,𝜉

1
2
𝝎𝑇𝝎 + 𝐶

𝑙
∑

𝑖=1
𝜉𝑖,

ubject to 𝑦𝑖(𝝎𝑇𝜙(𝐱𝑖) + 𝑏) ≥ 1 − 𝜉𝑖,

𝜉𝑖 ≥ 0, 𝑖 = 1,… , 𝑙,

(14)

where 𝜙(𝐱𝑖) maps 𝐱𝑖 into a higher-dimensional space and 𝐶 > 0 is
the regularization parameter that tells the optimizer what it should
minimize more between the 1

2𝝎
𝑇𝝎 and ∑𝑙

𝑖=1 𝜉𝑖 terms. For instance,
if 𝐶 = 0, then only the term 1

2𝝎
𝑇𝝎 will be minimize whereas if 𝐶

is a large value, then ∑𝑙
𝑖=1 𝜉𝑖 will be minimized. Due to the possible

igh dimensionality of the vector variable 𝝎, it is common to solve the
ollowing dual problem via the method of Lagrange multipliers (Boser
t al., 1992; Cristianini et al., 2000):

min
𝜶

1
2
𝜶𝑇𝑄𝜶 − 𝐫𝑇𝜶,

ubject to 𝐲𝑇𝜶 = 0,

0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1,… , 𝑙,

(15)

here 𝜶 = [𝛼𝑖,… , 𝛼𝑙] are Lagrange multipliers, 𝐫 = [1,… , 1]𝑇 is a
vector of all ones, 𝑄 is an 𝑙 by 𝑙 positive semidefinite matrix, 𝑄𝑖𝑗 ≡
𝑦𝑖𝑦𝑗𝐾(𝐱𝑖, 𝐱𝑗 ), and 𝐾(𝐱𝑖, 𝐱𝑗 ) ≡ 𝜙(𝐱𝑖)𝑇𝜙(𝐱𝑗 ) is the kernel function.

After solving Eq. (15), using the primal–dual relationship, the opti-
mal 𝝎 satisfies

𝝎 =
𝑙

∑

𝑖=1
𝑦𝑖𝛼𝑖𝜙(𝐱𝑖), (16)

and the decision function, ℎ𝝎,𝑏(𝑥), that maximizes the margin of sepa-
ration between the classes is given by

ℎ𝝎,𝑏(𝐱) = sign(𝝎𝑇𝜙(𝐱) + 𝑏) = sign

( 𝑙
∑

𝑖=1
𝑦𝑖𝛼𝑖𝐾(𝐱𝑖, 𝐱) + 𝑏

)

. (17)

In this study the libsvm library (Chang & Lin, 2011) was used for
the implementation of the SVM classifier.

2.6.2. Graph kernels
Since graph is a complex structure with no direct representation

that can be useful for classification, graph kernel is one of the main
approaches to solve the challenge that is to compute the similarity
between two or more complex graphs (Kriege, Johansson, & Morris,
2020a; Richiardi, Achard, Bunke, & Van De Ville, 2013). Graph kernel
methods are commonly used in conjunction with machine learning
algorithms, especially with SVM.

In this study we used two graph kernels, the Propagation Ker-
nel (P2K) (Neumann, Garnett, Bauckhage, & Kersting, 2016) and the
Hash Graph Kernel (HGK) (Morris, Kriege, Kersting, & Mutzel, 2016).
The HGK framework has two implicit graph kernels, the Weisfeiler–
Lehman (WL) subtree kernel (Shervashidze, Schweitzer, Van Leeuwen,
Mehlhorn, & Borgwardt, 2011) and the shortest-path kernel (SP) (Borg-
wardt & Kriegel, 2005).
6

Considering 𝜒 as a non-empty set and letting 𝐾 ∶ 𝜒 × 𝜒 → R be a
unction, then 𝐾 is a kernel on 𝜒 if there is a real Hilbert space 𝐾 and

a mapping 𝜙 ∶ 𝜒 → 𝐾 such that 𝐾(𝐱, 𝐲) = 𝜙(𝐱)𝑇𝜙(𝐲) for 𝐱, 𝐲 ∈ 𝜒 . In
his case, we call 𝜙(⋅) a feature map, and 𝐾 a feature space. Therefore,
o define a graph kernel we let  to be a non-empty set of attributed
raphs, then a graph kernel is 𝐾 ∶  ×  → R.

The Propagation Kernel is a graph kernel that can handle graphs
ith continuous-valued attributes. The main idea is to compare two
raphs by their attributes distribution with a diffusion scheme, where
t updates a transition matrix of random walks. The similarity is calcu-
ated by mapping distribution vectors from all random walks iterations
nto discrete bins with locality-sensitive hashing and then computing
heir similarity.

The Hash Graph Kernel iteratively hashes continuous attributes to
iscrete labels and allows the use of different base kernels to handle
hose hashed attributes, like the WL and SP kernels. In this study, the
umber of iterations was set to 20, which is the number suggested by
he authors of the method. The HGK between two graphs 𝐺1 and 𝐺2 is
efined as

𝐺𝐾
(

𝐺1, 𝐺2
)

= 1
⌈H⌉

⌈H⌉

∑

𝑖=1
𝐾

(

h𝑖
(

𝐺1
)

, h𝑖
(

𝐺2
))

, (18)

where 𝐾 is a base graph kernel, such as the WL or SP, and H =
{

h1, h2,… ⌈H⌉
}

is a finite family of hash functions produced with
locality-sensitive hashing with each element h𝑖 ∈ H being a function
h𝑖 ∶ R𝐷 → N. In addition, we also tested a modified version of
the shortest-path (SP) graph kernel, where the SP is computed with
edge weights. In this study we named this modification as HGK+wSP
(weighted SP).

The P2K and HGK kernels used in this study meet the requirements
of handle node attributed graphs with undirected edges. When using
a graph kernel in a set 𝜒 with 𝑛 graphs, it will produce a Gram
matrix 𝐺𝑀 , which is a positive and semidefinite square matrix of 𝑛× 𝑛
elements, where each element is the result of the graph kernel function
between each possible pair of graphs in 𝜒 , i.e., 𝐺𝑀(𝑖, 𝑗) = 𝐾

(

𝐺𝑖, 𝐺𝑗
)

for 𝐺𝑖, 𝐺𝑗 ∈ 𝜒 . In other words, the 𝐺𝑀 stores the similarity computed
by the graph kernel between all graphs in the dataset.

2.6.3. Graph-kernel SVM model
As a last step of our method, a Gram matrix is generated for

each possible combination of graph kernels, texture feature, node at-
tributes, distance metric for graph weights and different values of 𝑛
in Eq. (11), as represented in Fig. 3. All possible combinations, as
illustrated in Fig. 3, were evaluated for the image classification tasks,
CN×AD, CN×MCI and MCI×AD.

The SVM receives a Gram matrix to perform its classification with
a precomputed kernel matrix. In this study, we train and evaluate the
performance of our Kernel-Graph SVM classifier using 426 MR images
(175 CN, 153 MCI and 96 AD) on a grid-search with 10-fold cross-
validation and the accuracy as the performance metric. For each fold,
we search for the best hyper-parameter C using the following range
[10−6; 103] with steps defined by a base of 10 with the exponent
incremented by 1.0, i.e., 10−6, 10−5,… , 103.

Due to the small random behavior of the graph kernels used in
this study, for instance the random walk in the WL, P2K and HGK,
each cross-validation was repeated 10 times to obtain more accurate
results, which means that the final result is an arithmetic mean of the
10 repetitions. To a better evaluation of the classification results of
ours experiments, we also computed accuracy, sensitivity, specificity
and AUC.

Fig. 3 shows the classification scheme proposed in this study. For
each graph kernel, we construct graphs using two node attributes
approaches and, for each node attributes we define its edge weights
using the three distances as described in Section 2.5.2. Once we select

a distance, we can use the precomputed threshold values for the given
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Fig. 3. Classification scheme.
distance and texture feature extracted from GLCM, RLM or LBP. In ad-
dition, each possible path generates a Gram Matrix that is used for the
SVM for classification. As an example, we have draw a path highlighted
in blue that corresponds to the path for the graph kernel HGK+WL,
node attributes Vol+Stats, Hellinger distance weights, parameter 𝑛 = 1,
and 𝐹22.

The following section presents the results and discussion of our
experiments, which includes feature extraction and classification.

3. Results and discussions

In this section, we provide results of the feature extraction step
and of each classification analysis, CN×AD, CN×MCI and MCI×AD, for
the dataset described in Section 2.1. To evaluate the performance of
different combinations of texture attributes, graph properties and types
of graph kernels, we present three Tables with the experiment results.
In Table 2 we show the best accuracy results of each combination for
the top ranked texture attributes for CN×AD. The same arrangements
are shown in Tables 3 and 4 for the CN×MCI and MCI×AD cases,
respectively.

3.1. Feature extraction

The image texture features and statistical values extracted from
the brain regions play a major role in this study since their distribu-
tions compose the graph node attributes. By applying the normaliza-
tion step to the texture distributions, the attributes that are separable
between classes should remain separable, and the distance between
the distributions, obtained with a fixed number of bins using the
Freedman–Diaconis rule, should also remain relatively the same.

Fig. 4 shows the texture distributions of three random subjects from
the AD, MCI and CN classes. Each distribution represents the values
of the feature 𝐹14 (High Gray-Level Run Emphasis), extracted with the
RLM. Theses distributions are from each subject’s left Amygdala, as this
region is one of the primary regions affected by the development of
Alzheimer, along with the Hippocampus. The hypothesis in this study
is that the histopathological changes in AD, caused by the accumulation
of amyloid 𝛽 (A𝛽) plaques and neurofibrillary tangles, will change the
texture pattern of the brain regions related to cognition and this change
will be different between subjects of the CN, MCI and AD classes.

In Fig. 4(a) each non-normalized distribution represents the raw
values computed by the RLM filter. A clear separation can be noticed
between the distributions of the diagnostic classes, showing a distance
range from 20 to over 100, approximately. Fig. 4(b) presents the results
of applying the two normalization steps as described in Section 2.4.
The first step uses the min–max normalization per texture feature for
all analyzed brain regions on all subjects, and the second applies the
min–max over all texture distributions by region. In this case, after the
first step, the number of bins of each region distribution was fixed per
texture feature.

The increase of the granularity in the distributions from Fig. 4(a) to
(b) can be attributed to the different sizes (voxel counts) of the brain
regions. As a result of the Freedman–Diaconis rule, the distributions
7

Fig. 4. (a) Non-normalized and (b) normalized texture distributions for the left
Amygdala regions of a patient for each diagnostic class. The pairwise Wasserstein
distances of the normalized distributions are 𝐷𝑤𝑠 = 0.370, 𝐷𝑤𝑠 = 0.221, and 𝐷𝑤𝑠 = 0.148
for the MCI×AD, CN×MCI and CN×AD cases, respectively.

built from small regions, such as the amygdala, will show an increasing
number of bins, while for large regions, like the putamen, this number
will decrease.

We can also observe that the distances between the distributions
in Figs. 4(a) and (b) remained similar, with a slightly reduction in
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Table 2
Classification results of the CN×AD experiments. The values of accuracy, sensitivity, and specificity are given in percentage.

Graph Node Weight Texture Threshold Accuracy Sensitivity Specificity AUC
kernel attributes metric feature parameter

P2K Distribution Hellinger 𝐹19 (LBP) 𝑛 = 3 75.6 ± 2.1 46.0 ± 5.2 91.6 ± 1.6 0.72 ± 0.02
Vol+Stats Hellinger 𝐹21 (LBP) 𝑛 = 3 70.2 ± 1.8 24.0 ± 4.8 95.5 ± 2.2 0.65 ± 0.02

HGK+WL Distribution Hellinger 𝐹21 (LBP) 𝑛 = 2 77.3 ± 0.6 42.0 ± 2.4 96.8 ± 0.6 0.84 ± 0.01
Vol+Stats Wasserstein 𝐹21 (LBP) 𝑛 = 3 81.0 ± 1.3 52.2 ± 3.0 97.3 ± 0.6 0.87 ± 0.01

HGK+SP Distribution Wasserstein 𝐹2 (GLCM) 𝑛 = 2 75.9 ± 1.7 48.3 ± 7.4 91.0 ± 2.2 0.78 ± 0.02
Vol+Stats KL 𝐹19 (LBP) 𝑛 = 4 83.8 ± 1.5 68.5 ± 2.7 92.7 ± 1.7 0.92 ± 0.01

HGK+wSP Distribution Wasserstein 𝐹19 (LBP) 𝑛 = 5 73.6 ± 0.8 25.4 ± 2.8 100 ± 0.0 0.66 ± 0.01
Vol+Stats Hellinger 𝐹19 (LBP) 𝑛 = 2 77.3 ± 1.6 49.5 ± 6.3 93.1 ± 1.7 0.83 ± 0.01
Fig. 5. RLM-HGRE texture distributions for two AD subjects (AD 1 and AD 2) showing
the overlap in a dark color.

the overlap between the CN×MCI distribution after the normalization
steps. Among the distributions shown in Fig. 4(b), the MCI×AD is the
farthest apart (𝐷𝑤𝑠 = 0.370) following by the CN×MCI (𝐷𝑤𝑠 = 0.221)
and CN×AD (𝐷𝑤𝑠 = 0.148) distributions.

Fig. 5 shows the RLM-HGRE texture distributions of the left amyg-
dala of two AD subjects. Since the distributions are from the same
diagnostic group, we can observe a significant overlap between them.
The Wasserstein distance in this case is equal to 0.027, which is
considerably smaller than the inter-class distances reported for the plots
in Fig. 4.

3.2. Classification results

To evaluate the performance of our method, we organized our
results according to classification scheme shown in Fig. 3. We have as-
sessed all combinations of node attributes, weight metrics, and texture
attribute by using accuracy, sensitivity, specificity and AUC metrics,
and their values were calculated by running the classification experi-
ments ten times for each combination, as described in Section 2.6.3.

The threshold parameter (𝑛), which multiplies the standard devia-
tion in Eq. (11), was tested for the following values 𝑛 = 0.5, 1, 2, 3, 4,5.
Since we constructed complete graphs, the larger the 𝑛 is, the more
edges are deleted.

Table 2 shows the results for the CN×AD classification, where we
highlighted the best results of each metric. As it can be seen, the best
result (83.8% of accuracy, 68.5% of sensitivity, 92.7% of specificity
and 0.92 of AUC) was achieved by using the HGK+SP graph kernel for
the LBP texture feature (𝐹19), with volume+statistics as node attributes
and edge weights calculated with the KL distance. For the other results
we can observed that the sensitivities are considerably lower when
compared with the specificity values.
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Except for the HGK+SP+Distribution+Wasserstein combination, the
prevalence of the LBP 𝐹19 and 𝐹21 features is in the top ranked for
CN×AD, showing that in our study the LBP features perform better than
GLCM and RLM features to discriminate AD from CN. These results also
show that for the CN×AD experiment the graphs with node attributes
composed by the statistical moments and volume of the assessed brain
regions performed better than node attributes defined by the texture
probability distributions. This might be explained by the considerable
differences in brain atrophy of the assessed regions in the CN and AD
images.

Table 3 presents the results of the CN×MCI classification using
the same organization as the CN×AD case. The best result (74.1% of
accuracy, 71.6% of sensitivity, 76.2% of specificity and 0.81 of AUC)
was obtained using the HGK+WL graph kernel for the RLM texture
feature 𝐹17 with volume+statistics as node attributes and edge weights
calculated with the Hellinger distance. Similarly to the CN×AD, the
accuracy results using volume+statistics as node attributes were higher
compared with the case of using probability distributions. However,
in contrast to the CN×AD, the differences between the specificity and
sensitivity values were lower. Analyzing the texture feature column, it
can be noticed that six out of eight results were obtained using the
RLM technique. Furthermore, it can be seen that the HGK+SP with
volume+statistics as node attributes resulted in the same AUC value
(0.81) as the best result, but with slightly lower accuracy (74.0%).

As for the MCI×AD classification results in Table 4, the best result
(75.4% of accuracy, 50% of sensitivity, 91% of specificity and 0.74
of AUC) was achieved by the HGK+SP graph kernel for the RLM
texture 𝐹13 with volume+statistics as node attributes and, edge weights
calculated with the KL distance, which is the same combination used
to get the best CN×AD result.

The best classification results in this experiment were obtained for
higher values of the threshold parameter 𝑛 when compared with the
ones for the CN×AD and CN×MCI cases. This indicates that for the
MCI×AD classification it was necessary to remove more edges to obtain
discriminant graphs between the diagnostic classes. Similarly to the
CN×AD case, the sensitivity values were very low.

Another point to note is that none of the eight GLCM texture fea-
tures appeared in the top results of this experiment. In addition, com-
paring the three classification cases, CN×AD, CN×MCI and MCI×AD,
we observed that the texture features from the RLM and LBP methods
showed to be more discriminatory for the diagnosis of AD, i.e., for the
CN×AD and MCI×AD cases.

3.2.1. Comparison of results with other methods
For comparison purposes, Table 5 shows the accuracy and AUC

values of our method and four other methods published in the literature
that use graph-based approaches and the ADNI datasets. Please notice
that this comparison must be assessed with reservations since the im-
ages used in these studies possibly differ and, therefore, the parameters
adjustment of the methods and reported results were not obtained using
the same images.

A brief description of how our method compares to these other
studies is presented bellow:
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Table 3
Classification results of the CN×MCI experiments. The values of accuracy, sensitivity, and specificity are given in percentage.

Graph Node Weight Texture Threshold Accuracy Sensitivity Specificity AUC
kernel attributes metric feature parameter

P2K Distribution KL 𝐹13 (RLM) 𝑛 = 0.5 68.4 ± 2.1 59.6 ± 7.8 76.6 ± 4.2 0.75 ± 0.01
Vol+Stats Hellinger 𝐹7 (GLCM) 𝑛 = 1 64.9 ± 1.8 50.2 ± 7.3 77.8 ± 3.7 0.70 ± 0.01

HGK+WL Distribution Hellinger 𝐹17 (RLM) 𝑛 = 4 68.8 ± 1.4 57.3 ± 6.2 79.0 ± 3.5 0.78 ± 0.01
Vol+Stats Hellinger 𝐹17 (RLM) 𝑛 = 3 74.1 ± 1.3 71.6 ± 5.0 76.2 ± 2.4 0.81 ± 0.01

HGK+SP Distribution Hellinger 𝐹17 (RLM) 𝑛 = 3 68.5 ± 2.9 63.0 ± 7.1 74.2 ± 2.3 0.77 ± 0.01
Vol+Stats KL 𝐹18 (RLM) 𝑛 = 1 74.0 ± 1.0 79.8 ± 2.3 68.9 ± 2.6 0.81 ± 0.01

HGK+wSP Distribution KL 𝐹17 (RLM) 𝑛 = 0.5 64.8 ± 1.8 51.0 ± 6.7 78.1 ± 3.0 0.69 ± 0.01
Vol+Stats Wasserstein 𝐹5 (GLCM) 𝑛 = 5 70.4 ± 2.2 66.1 ± 6.9 75.7 ± 2.6 0.79 ± 0.01
Table 4
Classification results of the MCI×AD experiments. The values of accuracy, sensitivity, and specificity are given in percentage.

Graph Node Weight Texture Threshold Accuracy Sensitivity Specificity AUC
kernel attributes metric feature parameter

P2K Distribution Hellinger 𝐹14 (RLM) 𝑛 = 2 70.7 ± 1.7 33.0 ± 3.9 94.1 ± 1.9 0.67 ± 0.01
Vol+Stats Wasserstein 𝐹22 (LBP) 𝑛 = 3 68.0 ± 1.1 19.5 ± 3.9 98.8 ± 0.9 0.63 ± 0.01

HGK+WL Distribution Wasserstein 𝐹12 (RLM) 𝑛 = 2 74.1 ± 1.3 38.7 ± 3.2 96.4 ± 0.5 0.68 ± 0.01
Vol+Stats KL 𝐹15 (RLM) 𝑛 = 3 74.0 ± 2.5 41.1 ± 3.2 94.3 ± 1.3 0.72 ± 0.02

HGK+SP Distribution Wasserstein 𝐹15 (RLM) 𝑛 = 5 74.8 ± 1.3 41.3 ± 2.0 95.4 ± 2.4 0.72 ± 0.02
Vol+Stats KL 𝐹13 (RLM) 𝑛 = 3 75.4 ± 1.3 50.0 ± 3.2 91.0 ± 2.4 0.74 ± 0.01

HGK+wSP Distribution Hellinger 𝐹22 (LBP) 𝑛 = 5 71.9 ± 1.9 34.5 ± 5.3 96.3 ± 0.8 0.73 ± 0.01
Vol+Stats Hellinger 𝐹20 (LBP) 𝑛 = 3 70.9 ± 0.6 24.9 ± 2.3 99.9 ± 0.2 0.71 ± 0.01
Table 5
Comparison of results with other methods. The accuracy values are given in percentage.

Methods Subjects CN×AD CN×MCI MCI×AD

CN MCI AD ACC AUC ACC AUC ACC AUC

Liu et al. (2017) 230 280 200 95.3 0.96 86.6 0.91 86.5 0.85
Jie et al. (2018) 50 99 34 – – 82.6 0.78 – –
Cui et al. (2018) 21 25 22 91.3 0.99 98.3 0.99 77.3 0.97
Wee et al. (2019) 242 415 355 81.0 – 67.7 – 65.4 –
Hett et al. (2021) 213 – 130 91.6 – – – – –
Proposed method 200 153 121 83.8 0.92 74.1 0.81 75.4 0.74
• Liu et al. (2017) presented a graph-based approach built from
multiple regions that uses GLCM texture features and performs
two stages of feature selection. Although in general their average
results are superior to those obtained by our method, for the
CN×AD case the AUC value of our method is only slightly lower.
However, it is important to note that in their work, Liu et al. did
not provide the variance values of the metrics used to evaluate
the results.

• Jie et al. (2018) proposed a graph kernel approach built from
multiple brain regions and which uses features extracted from
fMRI data of the ADNI dataset. In comparison to this method, our
approach achieved superior AUC value for CN×MCI, i.e., 0.81 of
our method against 0.78 of their approach. Their work also used
fewer images when compared to our study.

• Cui et al. (2018) proposed a method based on graph kernel that
uses attributes from fMRI readings of multiple brain regions.
Despite the superior results reported in their study, they used less
than 30 images for each diagnostic class.

• Wee et al. (2019) proposed a method based on a spectral graph
convolutional neural network that incorporates cortical thickness
and its underlying geometry information to identify MCI and AD
using T1-w MRI data from the ADNI datasets. Although their
focus was on the prediction of conversion of MCI to AD, they
also used their method for image classification. In comparison
to their work, our method resulted in superior accuracy in all
classification cases. However, it is noteworthy that the number of
images used in their study was higher for the MCI and AD classes.

• As previously described in the introduction section of this paper,
Hett et al. (2021) used multiple regions and extracted their at-
9

tributes using the PBG method (Coupé et al., 2012). The focus
of their study was primarily to distinguish stable MCI from pro-
gressive MCI, but they also used their method for CN×AD where
they obtained results slightly above ours with similar number of
subjects.

In contrast to our method, which uses only a threshold-based method
for removing edges from graphs, the related methods described above
use sophisticated edge and node attribute selection strategies to build
class discriminating graphs. This processing step may have contributed
positively to the classification results.

4. Conclusions

We presented a new technique to perform MR image classification
for AD diagnosis using kernel-based graph methods that are constructed
from image texture features extracted from structural MR images. For
each MR image in the dataset, we extracted 22 texture features and
statistical moments and volume of multiple segmented brain regions
and used this information within two strategies to build our graph
representations. Furthermore, we proposed an edge removal technique
to help build discriminative graphs for the AD classification task. In
addition, we evaluated three distances as the edge metric and per-
formed the MR image classification using SVMs with four different
graph kernels.

Our results showed a better performance for the CN×AD (AUC =
0.92) and CN×MCI (AUC = 0.81) classifications, and worse for the
MCI×AD case (AUC = 0.78). These results are consistent with other
results published in the literature and make sense if we consider the
concept of Alzheimer’s disease continuum from pathophysiological,

biomarker and clinical perspectives.
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Comparing to the state-of-the-art in graph-based Alzheimer’s clas-
sification our results superior in some cases and slightly inferior in
others. We believe that by using a more elaborated technique for edge
and attribute selection for the image classification and incorporating
other attributes such as MMSE score and ranking (Hett et al., 2021),
our results can improve significantly.

This project was developed using python and C++ programming
languages. All source codes is available at GitHub3.
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All feature definitions in this appendix were obtained from the
Ref. Vimort et al. (2017).
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Appendix A. GLCM texture features

Considering a GLCM matrix 𝑃 and 𝑝(𝑖, 𝑗) as an element in the cell
𝑖, 𝑗) of 𝑃 and 𝜇 =

∑

𝑖,𝑗 𝑖 ⋅𝑝(𝑖, 𝑗) =
∑

𝑖,𝑗 𝑗 ⋅𝑝(𝑖, 𝑗) and 𝜎 =
∑

𝑖,𝑗 (𝑖−𝜇)2𝑝(𝑖, 𝑗) =
𝑖,𝑗 (𝑗−𝜇)2𝑝(𝑖, 𝑗) to be the weighted average and variance, respectively.
ssuming that 𝜇𝑡 and 𝜎𝑡 are the mean and standard deviation, respec-

ively, of the row or column sums, then the GLCM texture features are
efined as:

Energy is a feature that measures the local uniformity of a tex-
ure. The higher the energy value is, the bigger the uniformity and
rganization of the texture.

1 =
∑

𝑖,𝑗
𝑝(𝑖, 𝑗)2.

Entropy is a feature that expresses the level of organization of a
exture. A completely random distribution of gray-level intensities in
image volume would have very high entropy, while an image with

he same gray-level across all pixels would have a very low value of
ntropy.

2 =

{

∑

𝑖,𝑗 𝑝(𝑖, 𝑗) log2 (𝑝(𝑖, 𝑗)) , if 𝑝(𝑖, 𝑗) ≠ 0
0, if 𝑝(𝑖, 𝑗) = 0.

Correlation is a feature that measures the linear dependency of
ray level values in the co-occurrence matrix.

3 =
∑

𝑖,𝑗

(𝑖 − 𝜇)(𝑗 − 𝜇)𝑝(𝑖, 𝑗)
𝜎2

.

Inverse Difference Moment is a feature that measures the ho-
mogeneity of an image. This feature will be low for in-homogeneous
images, and a high for homogeneous images.

𝐹4 =
∑

𝑖,𝑗

𝑝(𝑖, 𝑗)
1 + (𝑖 − 𝑗)2

.

Inertia or contrast is a feature that measures local gray-level
variation in the GLCM matrix. If the neighboring pixels in a texture
are very similar in their gray-level values then the image contrast is
very low. Contrast is zero for a constant image.

𝐹5 =
∑

𝑖,𝑗
(𝑖 − 𝑗)2𝑝(𝑖, 𝑗).

Cluster Shade is a feature of the skewness of the matrix and it is
elieved to be linked to perception of uniformity in an image. When
his feature is high the image is asymmetric.

6 =
∑

𝑖,𝑗
((𝑖 − 𝜇) + (𝑗 − 𝜇))3𝑝(𝑖, 𝑗).

Cluster Prominence is a feature also related to the perceptual
ymmetry of an image. When the cluster prominence value is high, the
mage is less symmetric.

7 =
∑

𝑖,𝑗
((𝑖 − 𝜇) + (𝑗 − 𝜇))4𝑝(𝑖, 𝑗).

Haralick’s Correlation is the original correlation measure designed
y Haralick in 1973, and it measures the linear dependence between
ixels relative to each other.

8 =
∑

𝑖,𝑗 (𝑖, 𝑗)𝑝(𝑖, 𝑗) − 𝜇2
𝑡

𝜎𝑡
.

Appendix B. RLM texture features

Considering 𝑝(𝑖, 𝑗) as a element of the RLM matrix, and 𝑖 as the
oxel intensity and 𝑗 as length of the run. The RLM texture features
re defined as:

Short run emphasis (SRE) measures the distribution of short runs.
RE is expected to be large for fine textures.

9 =

∑

𝑖,𝑗
𝑝(𝑖,𝑗)
𝑗2

∑ .

𝑖,𝑗 𝑝(𝑖, 𝑗)

http://www.fnih.org
https://github.com/lucasjome/alzheimer
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Table C.6
List of brain regions used in our analysis.

label_index label_name label_index label_name

4 Left-Lateral-Ventricle 1019 ctx-lh-parsorbitalis
5 Left-Inf-Lat-Vent 1020 ctx-lh-parstriangularis
7 Left-Cerebellum-White-Matter 1021 ctx-lh-pericalcarine
10 Left-Thalamus 1022 ctx-lh-postcentral
11 Left-Caudate 1023 ctx-lh-posteriorcingulate
12 Left-Putamen 1024 ctx-lh-precentral
13 Left-Pallidum 1025 ctx-lh-precuneus
14 3rd-Ventricle 1026 ctx-lh-rostralanteriorcingulate
15 4th-Ventricle 1027 ctx-lh-rostralmiddlefrontal
16 Brain-Stem 1028 ctx-lh-superiorfrontal
17 Left-Hippocampus 1029 ctx-lh-superiorparietal
18 Left-Amygdala 1030 ctx-lh-superiortemporal
24 CSF 1031 ctx-lh-supramarginal
28 Left-VentralDC 1034 ctx-lh-transversetemporal
31 Left-choroid-plexus 1035 ctx-lh-insula
43 Right-Lateral-Ventricle 2002 ctx-rh-caudalanteriorcingulate
44 Right-Inf-Lat-Vent 2003 ctx-rh-caudalmiddlefrontal
46 Right-Cerebellum-White-Matter 2005 ctx-rh-cuneus
49 Right-Thalamus 2006 ctx-rh-entorhinal
50 Right-Caudate 2007 ctx-rh-fusiform
51 Right-Putamen 2008 ctx-rh-inferiorparietal
52 Right-Pallidum 2009 ctx-rh-inferiortemporal
53 Right-Hippocampus 2010 ctx-rh-isthmuscingulate
54 Right-Amygdala 2011 ctx-rh-lateraloccipital
60 Right-VentralDC 2012 ctx-rh-lateralorbitofrontal
63 Right-choroid-plexus 2013 ctx-rh-lingual
77 WM-hypointensities 2014 ctx-rh-medialorbitofrontal
251 CC_Posterior 2015 ctx-rh-middletemporal
252 CC_Mid_Posterior 2016 ctx-rh-parahippocampal
255 CC_Anterior 2017 ctx-rh-paracentral
1002 ctx-lh-caudalanteriorcingulate 2018 ctx-rh-parsopercularis
1003 ctx-lh-caudalmiddlefrontal 2019 ctx-rh-parsorbitalis
1005 ctx-lh-cuneus 2020 ctx-rh-parstriangularis
1006 ctx-lh-entorhinal 2021 ctx-rh-pericalcarine
1007 ctx-lh-fusiform 2022 ctx-rh-postcentral
1008 ctx-lh-inferiorparietal 2023 ctx-rh-posteriorcingulate
1009 ctx-lh-inferiortemporal 2024 ctx-rh-precentral
1010 ctx-lh-isthmuscingulate 2025 ctx-rh-precuneus
1011 ctx-lh-lateraloccipital 2026 ctx-rh-rostralanteriorcingulate
1012 ctx-lh-lateralorbitofrontal 2027 ctx-rh-rostralmiddlefrontal
1013 ctx-lh-lingual 2028 ctx-rh-superiorfrontal
1014 ctx-lh-medialorbitofrontal 2029 ctx-rh-superiorparietal
1015 ctx-lh-middletemporal 2030 ctx-rh-superiortemporal
1016 ctx-lh-parahippocampal 2031 ctx-rh-supramarginal
1017 ctx-lh-paracentral 2034 ctx-rh-transversetemporal
1018 ctx-lh-parsopercularis 2035 ctx-rh-insula
Long run emphasis (LRE) is a feature that measures distribution of
ong runs. LRE is expected to be large for coarse structural textures.

10 =
∑

𝑖,𝑗 𝑝(𝑖, 𝑗)𝑗2
∑

𝑖,𝑗 𝑝(𝑖, 𝑗)
.

Gray level non-uniformity (GLN) measures the similarity of gray-
evel values through out the texture. The GLN is expected to be small
f the gray-level values are alike throughout the whole texture.

11 =
∑

𝑖(
∑

𝑗 𝑝(𝑖, 𝑗))2
∑

𝑖,𝑗 𝑝(𝑖, 𝑗)
.

Run length non-uniformity (RLN) is a feature that measures the
imilarity of the length of runs through out the image. The RLN is
xpected to be small if the run lengths are alike through out the image.

12 =
∑

𝑗 (
∑

𝑖 𝑝(𝑖, 𝑗))2
∑

𝑖,𝑗 𝑝(𝑖, 𝑗)
.

Low gray level run emphasis (LGRE) is orthogonal to SRE, and the
alue of the feature increases when the texture is dominated by many
uns of low gray value.

13 =

∑

𝑖,𝑗
𝑝(𝑖,𝑗)
𝑖2

∑ .
11

𝑖,𝑗 𝑝(𝑖, 𝑗)
High gray level run emphasis (HGRE) is orthogonal to LRE, and
the metric increases when the texture is dominated by many runs of
high gray value.

𝐹14 =
∑

𝑖,𝑗 𝑝(𝑖, 𝑗)𝑖2
∑

𝑖,𝑗 𝑝(𝑖, 𝑗)
.

Short run low gray level emphasis (SRLGE) is a diagonal mea-
surement that combines SRE and LGRE. The metric increases when the
texture is dominated by many short runs of low gray value.

𝐹15 =

∑

𝑖,𝑗
𝑝(𝑖,𝑗)
𝑖2𝑗2

∑

𝑖,𝑗 𝑝(𝑖, 𝑗)
.

Short run high gray level emphasis (SRHGE) is orthogonal to
SRLGE and LRHGE and increases when the texture is dominated by
short runs with high intensity levels.

𝐹16 =

∑

𝑖,𝑗
𝑝(𝑖,𝑗)
𝑗2

∑

𝑖,𝑗 𝑝(𝑖, 𝑗)
.

Long run low gray level emphasis (LRLGE) is complementary to
SRHGE, it increases when the texture is dominated by long runs that
have low gray levels.

𝐹17 =

∑

𝑖,𝑗
𝑝(𝑖,𝑗)𝑗2

𝑖2
∑ .
𝑖,𝑗 𝑝(𝑖, 𝑗)
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Long run high gray level emphasis (LRHGE) is the complemen-
tary metric to SRLGE and increases with a combination of long, high-
gray value runs.

𝐹18 =
∑

𝑖,𝑗 𝑝(𝑖, 𝑗)𝑖2𝑗2
∑

𝑖,𝑗 𝑝(𝑖, 𝑗)
.

ppendix C. List of brain regions

List of brain regions used in our analysis. Regions with label index
002 onwards (those starting with ctx) are from the DKT atlas. The
ther regions are from the ASEG atlas. In this list, lh stands for ‘‘Left
emisphere’’ and rh stands for ‘‘Right Hemisphere’’ (see Table C.6).
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